Microrobotics for Molecular Biology: Manipulating Deformable Objects at the Microscale

نویسندگان

  • Bradley J. Nelson
  • Yu Sun
  • Michael A. Greminger
چکیده

Recent advances in molecular biology such as cloning demonstrate that increasingly complex micromanipulation strategies for manipulating individual biological cells are required. From a robotics standpoint, the manipulation of biological cells, sometimes referred to as biomanipulation, presents several interesting research issues that extend well beyond cell manipulation. Biological cells are highly deformable objects, and the material properties of these objects are not well quantified, so developing strategies for manipulating deformable objects must be addressed. Most biological cells are between 1μm and 100μm in diameter, depending on the cell type, so micromanipulation issues must be explored, including the appropriate use of high resolution, low depth-of-field vision feedback and very low magnitude multi-axis force feedback. By pursuing robotic manipulation of biological cells, many interesting robotics research avenues in micromanipulation, deformable object handling, multi-sensor integration, and force and vision feedback assimilation must be explored. This paper explores the visual tracking of biological cells using physics-based models and the measurement of applied force fields using a new cell deformation model with visual feedback. A multi-axis MEMS-based force sensor is used to determine applied forces and develop models of cell deformation. Robust tracking of cell deformation is shown and real-time determination of applied force fields is demonstrated. In addition, the system developed has been used to quantitate for the first time a phenomenon known as “zona hardening” during mouse oocyte fertilization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micromanipulation, communication and swarm intelligence issues in a swarm microrobotic platform

Rapid advancements of both microsystem technology and multi-agent systems have generated a new discipline, arising from the fusion of microrobotics technologies and of swarm intelligence theories. Microrobotics contributes with new capabilities in manipulating objects in the microscale and in developing miniaturized intelligent machines, while swarm intelligence supplies new algorithms allowing...

متن کامل

Manipulating deformable linear objects: Attachable adjustment-motions for vibration reduction

This paper addresses the problem of handling deformable linear objects in a suitable way to avoid acute vibration. Different types of adjustment-motions that eliminate vibration of deformable objects and that can be attached to the end of an arbitrary end-effector’s trajectory are presented. For describing the dynamics of deformable linear objects, the finite element method is used to derive th...

متن کامل

Using Task Symmetry for Human-Robot Collaborative Manipulation of Deformable Objects Without Modeling Deformation

I. INTRODUCTION We present a symmetry-based method that allows humans and robots to collaboratively manipulate deformable objects. The method does not require modeling and simulating deformation. Our method is based on the concept of diminishing rigidity, which we use to quickly compute an approximation to the Jacobian of the deformable object without using simulation. This Jacobian is used to ...

متن کامل

Manipulating deformable linear objects – Contact states and point contacts –

The task of handling non-rigid one-dimensional objects by a robot manipulation system is investigated. To distinguish between different non-rigid object behaviors, five classes of deformable objects from a robotic point of view are proposed. Additionally, an enumeration of all possible contact states of one-dimensional objects with polyhedral obstacles is provided. Finally, the qualitative moti...

متن کامل

A van der Waals force-based adhesion model for micromanipulation

The robotic manipulation of microscopic objects is disturbed directly by the adhesion between the endeffector and the objects. In the microscale, no reliable model of adhesion is available and currently the behaviour of the micro-objects cannot be predicted before experiments. This paper proposes a new model of adhesion based on the analytical resolution of the coupling between the mechanical d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003